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Organization of The Mini Course

@ Day 1: Basic Topology of Equilibrium Networks
@ Day 2: Percolation and Magnetism

@ Day 3: Growing Networks

M. Ostilli Mini course on Complex Networks



First of all

@ What is a graph? Preliminary Definitions

@ A historical example
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Formally, a graph G is a pair of sets G = (V, E), where
Vis a setof N = |V| nodes, and E a set of L = |E|
edges (or links)




G is called Simple if there are no multiple links and no

self-links

I

simple graph nonsimple graph nonsimple graph
with multiple edges with loops
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G is Connected if any node can be reached from any
other node via a path of links

Mini course on Complex Networks



G is Disconnected if it is Not Connected

o

y !
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Node-degree k




Mean-degree (or connectivity of G) (k)

(k) =S, ki/N=2L/N N=10,L=17 = 2L/N = 3.4
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G is a Tree if there are No Loops
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Undirected and Directed Graphs

Undirected Graph Directed Graph
IN _ ouT _
ky =4 kIN=3, KkPUT=2
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G is sparse if L = O(N)

G is dense if L = O(N*) with o > 1

AN
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To summarize

@ Gisapairofsets G=(V,E), where Visasetof N=|V|
nodes, and E a set of L = |E| edges (links)

@ G is called simple if there are no multiple links and no
self-links

@ Gis called sparse if L = O(N)
@ Gis called dense if L = O(N%) with o > 1

@ The degree k; (or connectivity) of a node /, is the number
of links emanating from the node =

N
1 2L
(k) = N; Ki=

for the moment (-) refers to the mean over a single G
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Why studying graphs: An historical example
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Why studying graphs: An historical example
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Day 1: Basic Topology of Equilibrium Networks

@ Cayley Trees and Bethe Lattices

@ Adjacency Matrix

@ Main Graph Metrics: P(k); (C); (¢)
@ The Random Graph Model

@ The Configuration Model

@ Main Graph Metrics: Simple Evaluations for locally
Tree-like nets
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Cayley Tree = Finite “Regular” Tree

Here g = 3 and (k) =?
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Cayley Tree = Finite “Regular” Tree

Here g = 3 and (k) =2 — 2/N (holds for any finite tree)
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Bethe Lattice = Infinite Regular Tree

Here g=3and (k) = g
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Adjacency Matrix a

Any graph G can be encoded via the Adjacency Matrix a.
We label the nodes by anindexi=1,... . N

2 — 1, if there a link between / and J,
"1 0, otherwise

In other words G=(V,E)=a
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Adjacency Matrix a

The degree of the vertex i
1 N(k)
ki = Zj:ai,ja L&) =3 ;ai,j =
The number of triangles passing through the vertex i
No() = S auaua Mr(G) - ST(@)

The number of non self overlapping paths of length ¢ passing
between j and j

Npans(i. j; €) ~ (a")i;+ O((a" ™))

Random Matrix Theory approach...
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Degree Distribution P(k)

N(k) is the number of nodes with degree k

In a Regular d-dimensional Lattice
P(k) - 6k,2d7

In the “Random Graph” (classical)

P(k) = <’l‘(>!ke—<k>,

In “Complex Networks” (typically, for large k)

P(k) ~ k™, v > 2
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Compare Random and Scale-Free Complex Network

random networks real networks (power-law, scale—free)
most nodes are

n average linked 0

3 3 most nodes are

=4 = lowly linked

ks ks

3 38

€ €

> >

f= f=

lowly linked <- node degree -> highly linked lowly linked <- node degree —> highly linked
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Compare Random and Scale-Free Complex Network

Exponential Scale-free
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Degree Distribution P(k)

Note that, if P(k) ~ k=7 =

N N
> Pk / dk P(k)k
k=1 1
=
lim (k) <oco and lim (k%) — (k)2 < o0 ~ >3,
N—o00 N—oo
lim (k) <oco and lim (k?) — (k)2 =00 2<~<3,
N—oo N—oo
lim (k) =00 and lim (k?) — (k) =00 ~<2.
N—oo N—oo

Most of the complex networks observed in nature and

technology have v < 3 and very often v ~ 2.

M. Ostilli Mini course on Complex Networks



Link-Degree Distribution (or Excess Distribution) P, (k)

Pi(k) = Prob. (that the end of a link points to a node of degree K)

It is simple to see that

We define also

P, (k, k") = Prob. (that the two ends of a link point to a node
of degree k and to a node of degree k', resp.)

A graph G is called Uncorrelated if P, (k, k') = P.(k)P.(K').
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Clustering Coefficient (C)

C(i) = Prob. (that between two neighbors of node /i there is a link)

1 .
(C) = N Z C(i) Average Clustering Coefficient
i

Most of the complex networks observed in nature and
technology have a small but not negligible (C).
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Average Path Length (/)

Given G, let ¢; j the length (i.e., the number of links), of the
shortest path between /i and j. Their mean is

2
() = m ;jei,j

In most cases of interest (¢) scales very slowly with N
(Small-World) and, furthermore the distribution of the ¢; ; is
quite picked around (¢), and (¢) ~ Diameter(G) = max; ; /; ;.
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Regular d-dimensional Lattice

Lattice points

Unit cell

i
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Regular d-dimensional Lattice

In a cube of side R, N o« R%and (¢) ~ D~ R= (£) ~ N'/9,
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Bethe Lattice = Infinite Regular Tree

R=distance between the central node, chosen as reference and
the nodes on the boundary of this sub-graph having N nodes.
We have N = 3 x 2f~1 = R — 1 = log(N/3)/log(2) = the
maximal distance between two randomly chosen nodes in the
sub-graph willbe D = 2R =2+ 2log(N/3)/log(2), from which
we guess also (¢) = O(log(N)/1og(2)).
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The Random Graph (A Finite “Random Bethe Lattice”)

Given N and a parameter 0 < p < 1, for each pair of nodes put
a link with probability p. In other words the a;;'s are i.i.d random
variables with

Prob.(ajj=1)=p, Prob.(a;=0)=1-p.

We have

and from
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A Random Graph with N=20

p:(] p:Ol pZUZ

(a) (&) (©)
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Sparse Random Graph

Since
(K)=(N-1)p =
if we choose
p= ﬁ c=0(1) = (kl=c=0(1) (Sparse— Graph)

It is immediate to see that

(C)=0 <C N*1> “Locally Tree — like...” to be discussed later

= we can use the analogy with the Bethe Lattice and find-out
the Small-World property:

_ log(N)
log((k))
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Sparse Random Graph

We have
Pl = p(1 - py (V)

= in the sparse case, p = %, we have

K
—C

. (o
dm U= o

= This Degree Distribution is not representative of real-world
networks!
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How Real Nets look like: Flickr-User

iR .
AR
P Image Credit: Flickr user dhammza

Complex Networks



How Real Nets look like: Air-Traffic
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How Real Nets look like: Bio

Biological networks: proteomics

Yeast'
-+=12401 nodes
11000 edges
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How Real Nets look like: Internet
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How Real Nets look like: WWW of Universities
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How Real Nets look like: Neural Network

{g-' 1
;. Wy 2 :
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How Real Nets look like: Food Web

M. Ostilli Mini course on Complex Networks



How Real Nets look like: Food Web

Model of the food web in Litle Rock Lake, Wisconsin www.foodwebs.org
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Power Law of Real Nets (A. Ciauset et.al. SIAM 2009)
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Power Law of Real Nets (A. Clauset et.al. SIAM 2009)

quantity n (x) el Tmax ZTmin o
count of word use 18 855 11.14 148.33 14 086 T2 1.95(2)
protein interaction degree 1846 2.34 3.05 56 5+2 3.1(3)
metabolic degree 1641 5.68 17.81 468 4+1 2.8(1)
Internet degree 22688 5.63 37.83 2583 214+9 2.12(9)
telephone calls received 51360423 3.88 179.09 375746 120 £49 2.09(1)
intensity of wars 115 15.70 49.97 382 21+3.5 1.7(2)
terrorist attack severity 9101 4.35 31.58 2749 12+4 2.4(2)
HTTP size (kilobytes) 226 386 7.36 57.94 10971 36.25 £22.74  2.48(5)
species per genus 509 5.59 6.94 56 4+2 2.4(2)
bird species sightings 591 | 3384.36 10952.34 138705 6679 + 2463  2.1(2)
blackouts (x103) 211 | 253.87 610.31 7500 230 £ 90 2.3(3)
sales of books (x10%) 633 | 1986.67 1396.60 19077 2400 =+ 430 3.7(3)
population of cities (x10%) 19447 9.00 77.83 8009 52.46 £11.88  2.37(8)
email address books size 4581 12.45 21.49 333 57+21 3.5(6)
forest fire size (acres) 203785 0.90 20.99 4121 6324 £3487  2.2(3)
solar flare intensity 12773 | 689.41 6520.59 231300 323+ 89 1.79(2)
quake intensity (x10%) 19302 24.54 563.83 63096 0.794 £ 80.198 1.64(4)
religious followers (x109) 103 27.36 136.64 1050 3.85 £ 1.60 1.8(1)
freq. of surnames (x103) 2753 50.59 113.99 2502 111.92 +40.67  2.5(2)
net worth (mil. USD) 400 | 2388.69  4167.35 46000 900 + 364 2.3(1)
citations to papers 415229 16.17 44.02 8904 160 £ 35 3.16(6)
papers authored 401445 7.21 16.52 1416 133+ 13 4.3(1)
hits to web sites 119724 9.83 392,52 129641 2+13 1.81(8)
links to web sites 241428853 9.15 106871.65 1199466 3684 + 151 2.336(9)
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The Configuration Model

Consider a sequence of non negative integers ky, ..., ky
such that

N
> ki=2L
i=1

Then connect in all the possible ways the 2L stubs
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The Configuration Model

AKA LSS

[11111222233334445567 | [14122325123734351146
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The Configuration Model

@ In principle we can build graphs with “any” given
P(k) = N(k)/N

@ Due to the random way by which we join the stubs, these
graphs are approximately uncorrelated:
Prob. (ajj = 1) ~ kikj/2L

@ Self-links and multiple-links exist but are negligible

@ We can evaluate (C)

@ We can evaluate (¢)

@ We can understand when correlations are important
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The Configuration Model: (C)

We use

(C) = Prob. (that between two neighbors of a given node there is a link)

1 (k(k—1))

- O e
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The Configuration Model: (¢)

We use N; = Number of Paths of length ¢

01
N = (K) (W)

_ _In(N/(K))
= <£> - In <<k(é{k_>1)>)

This makes us to understand also that the shortest loops are of
length O(In N)
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The Configuration Model: About Correlations

77 Prob _ kil o
0! ro .(a,-7j:1)_N<k> !
kik/ _ kr%ax
T NGk T N(K)
If P(k) ~ k=7 we use
1
<kmax> ~ N~
= kr%ax ~ N%

N(k)
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To summarize

@ We have static network models where P(k) is the only
“arbitrary” input (maximally random) and where, in
particular, if P(k) ~ k=7 with v > 2:

@ (C) — 0 (Locally Tree-Like)

@ (¢) ~In(N) for v > 3 (Small-World), o

@ () ~In(In(N)) for v < 3 (UItra—SmalI—WorId)

@ Shortest Loops have lenght ~ In(N) (Locally Tree-Like)
@ Correlations do exist for v < 3 (Degree-Degree Corr.)
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Day 2: Percolation and Magnetism

@ Examples

@ Node- and Link-Percolation

@ Percolation in Uncorrelated Complex Networks
@ Anomalous Mean-Field behavior

@ Magnetism
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Percolation
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Link- and Node-Percolation

bond percolation site percolution
Source: http:/imathworld.wolfram.com/BondPercolation.html

Bond- (or Link-) Percolation: Links are kept with probability p
Node- (or Site-) Percolation: Nodes are kept with probability p

For the moment being we can avoid making use of p.
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Percolation Without Removal in the Random Graph

~ 0B T v
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Average node degree in an Erdos-Renyi graph: <k=
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Percolation Without Removal in Uncorrelated Nets

F.C.C. = Finite Connected Component
G.C.C. = Giant Connected Component

X = Prob. (that the end of a randomly chosen link points to a F.C.C.)

S =(Number of Nodes belonging to the G.C.C.)/N
x=> P k)x""
k=1

1-8=>) P(k)x"
k=0

(k(k = 1))

(k)
(k(k=1))

M. Ostilli Mini course on Complex Networks

<1 No Percolation

> 1 Percolation



Anomalous Mean-Field Behavior (No Removal)

Within a certain limit, we can choose P(k) such that

kk—1)) _
(k]

If in particular P(k) ~ k=7, we find:

Percolation Threshold

(*)

@ ify> 4, (k%) < oo, and
S ~ ((k) — (k)¢)?, with 3 = 1 (classical limit)

e if3<vy<4, (k? < oo, (k¥ = o0, and
S ~ ((K) = (k)e)?, with 8 = 15

@ if2 < v < 3, (k?) = oo, to satisfy (x) we need to introduce
random node removal
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Percolation via Node-Removal in Uncorrelated Nets

Now we remove randomly each node with probability 1 — p =

x=1-p+p> Pik)x*"
k=1

1-S=1-p+p)_ Pk)x
k=0

{k(k=1))
(k)
(k(k—1))
(k)

<1 No Percolation

> 1 Percolation
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Anomalous Mean-Field Behavior (Node-Removal)

(k)
(k(k=1))

and if P(k) ~ k=7 we find
@ ify >4, (k%) < o0, and

Pec = Percolation Threshold

S~ (p—pc)?, with 3 = 1 (classical limit)
@ if3<vy<4, (k? < oo, (k¥ = o0, and
S~ (p— pc)’, with 5 = 713

oif2<fy<3,<k2>:oo,pc—>0and8~pﬁwithﬁ:31j
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Anomalous Ferromagnetic Mean-Field Behavior

If P(k) ~ k—7 we have:

@ ify > 5, (k%) < o0, and

me~ (T — T¢)P, with 3 = é (classical limit)
@ if3 <y <5, (k? < oo, (k% = 00, and
m~ (T = Te)?, with 8 = 15
@ if2<~vy<3, (k? = oo, T = o0, and
m~ T8 with g =

,y
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In some networks T; = oco: how is it possible?

o If for k large P(k) ~ e~ K/{K) or P(k) ~ k=7 with v > 5, we
have in both cases almost homogeneous networks,
k ~ (k) and m ~ (T — T,)?, with 3 = } (cl. mean-field)

o If for k large P(k) ~ k=7 with v ~ 2, we have an extremely
heterogeneous network, k fluctuates a lot and T, = oo with
m~T5

@ An extreme example: The Star Graph
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Day 3: Growing Networks

Examples

Random Growing Model
Barabasi-Albert Model
Linear Model

Continuum Approximation
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M. Ostilli

Growing Networks

N=4
L=4
Kr=2
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Random Growing Model (Dorogovtsev)

Prob. (that the new link goes to a node of degree k) = 17
= Master Equation for P(k; t):

P(k; t +1)(t + 1) — P(k; t)t = P(k — 1; t) — P(k: t) + 0k 1

. 1
= lim P(k; t) = P(K) = 5
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Barabasi-Albert Model

Prob. (that the new link goes to a node of degree k) = ﬁ
i=1 Ki
1

GRS

= lim P(k;t) = P(K) =
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Barabasi-Albert Model Generalized

Prob. (that one of the new m links goes to a node of degree k) = ﬁ
i=1"™
1

GRS

= lim P(k;t) = P(K) =
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Linear Model

Here ky > 0 and k refers to IN-degree only

. i k)= — Ktk
Pr. (that one of the new m links goes to a node of degree k) ST (ko)

= lim P(kit) = P(K) ~ k™7, v=24 2
t—o0 m
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