Mini course on Complex Networks

Massimo Ostilli¹

¹UFSC, Florianopolis, Brazil

September 2017 Dep. de Fisica

M. Ostilli Mini course on Complex Networks

* E > * E >

• Day 1: Basic Topology of Equilibrium Networks

Day 2: Percolation and Magnetism

Day 3: Growing Networks

(同) (ヨ) (ヨ)

• What is a graph? Preliminary Definitions

• A historical example

イロト イポト イヨト イヨト

3

Formally, a graph *G* is a pair of sets G = (V, E), where *V* is a set of N = |V| nodes, and *E* a set of L = |E| edges (or links)

G is called Simple if there are no multiple links and no self-links

nonsimple graph with loops

nonsimple graph with multiple edges

simple graph

G is Connected if any node can be reached from any other node via a path of links

프 + 프

G is Disconnected if it is Not Connected

・ 戸 ト ・ 三 ト ・ 三 ト

Э

Node-degree k

$$k_1 = 1, \ k_2 = 2, \ k_3 = 4, \dots$$

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Mean-degree (or connectivity of *G*) $\langle k \rangle$

$$\langle k \rangle = \sum_i k_i / N = 2L/N$$
 $N = 10, L = 17 \Rightarrow 2L/N = 3.4$

M. Ostilli Mini course on Complex Networks

G is a Tree if there are No Loops

M. Ostilli Mini course on Complex Networks

Undirected and Directed Graphs

Undirected Graph

Directed Graph

$$k_4^{IN} = 3, \quad k_4^{OUT} = 2$$

$$k_4 = 4$$

G is sparse if L = O(N)*G* is dense if $L = O(N^{\alpha})$ with $\alpha > 1$

M. Ostilli Mini course on Complex Networks

<ロト < 同ト < 巨ト < 巨ト = 三 の < ()

- *G* is a pair of sets G = (V, E), where *V* is a set of N = |V| nodes, and *E* a set of L = |E| edges (links)
- *G* is called simple if there are no multiple links and no self-links
- *G* is called sparse if L = O(N)
- *G* is called dense if $L = O(N^{\alpha})$ with $\alpha > 1$
- The degree k_i (or connectivity) of a node i, is the number of links emanating from the node ⇒

$$\langle k \rangle = \frac{1}{N} \sum_{i=1}^{N} k_i = \frac{2L}{N},$$

for the moment $\langle \cdot \rangle$ refers to the mean over a single *G*

・ロト ・ 同ト ・ ヨト ・ ヨト

Why studying graphs: An historical example

M. Ostilli Mini course on Complex Networks

< 🗇 🕨

≣ ▶ -

Why studying graphs: An historical example

Day 1: Basic Topology of Equilibrium Networks

- Cayley Trees and Bethe Lattices
- Adjacency Matrix
- Main Graph Metrics: P(k); $\langle C \rangle$; $\langle \ell \rangle$
- The Random Graph Model
- The Configuration Model
- Main Graph Metrics: Simple Evaluations for locally Tree-like nets

< 回 > < 三 > < 三 > -

Cayley Tree = Finite "Regular" Tree

Here q = 3 and $\langle k \rangle = ?$

・ 戸 ト ・ ヨ ト ・ ヨ ト

Cayley Tree = Finite "Regular" Tree

Here q = 3 and $\langle k \rangle = 2 - 2/N$ (holds for any finite tree)

< 同 > < 回 > < 回 > .

Bethe Lattice = Infinite Regular Tree

Here q = 3 and $\langle k \rangle = q$

(E) + (E) + ...

Any graph *G* can be encoded via the Adjacency Matrix *a*. We label the nodes by an index i = 1, ..., N

$$a_{i,j} = \begin{cases} 1, & \text{if there a link between } i \text{ and } j, \\ 0, & \text{otherwise} \end{cases}$$

In other words $G = (V, E) \equiv a$

(同) (ヨ) (ヨ)

Adjacency Matrix a

The degree of the vertex *i*

$$k_i = \sum_j a_{i,j}, \quad L(G) = \frac{1}{2} \sum_{i,j} a_{i,j} = \frac{N\langle k \rangle}{2},$$

The number of triangles passing through the vertex *i*

$$N_T(i) = \sum_{j,k} a_{i,j} a_{j,k} a_{k,i}, \quad N_T(G) = \frac{1}{3} \operatorname{Tr}(a^3)$$

The number of non self overlapping paths of length ℓ passing between *i* and *j*

$$N_{Paths}(i, j; \ell) \sim (\boldsymbol{a}^{\ell})_{i, j} + O((\boldsymbol{a}^{\ell-1}))$$

Random Matrix Theory approach...

Degree Distribution P(k)

N(k) is the number of nodes with degree k

$$P(k)=rac{N(k)}{N},$$

In a Regular *d*-dimensional Lattice

$$P(k) = \delta_{k,2d},$$

In the "Random Graph" (classical)

$$P(k) = rac{\langle k
angle^k}{k!} e^{-\langle k
angle},$$

In "Complex Networks" (typically, for large k)

$$P(k) \sim k^{-\gamma}, \gamma > 2$$

★ E ► ★ E ►

Compare Random and Scale-Free Complex Network

ヨトメヨト

Compare Random and Scale-Free Complex Network

< 🗇 🕨

Degree Distribution P(k)

Note that, if $P(k) \sim k^{-\gamma} \Rightarrow$

$$\sum_{k=1}^{N} P(k)k^{lpha} \sim \int_{1}^{N} dk \ P(k)k^{lpha},$$

 \Rightarrow

$$\begin{split} &\lim_{N\to\infty} \langle k \rangle < \infty \quad \text{and} \quad \lim_{N\to\infty} \langle k^2 \rangle - \langle k \rangle^2 < \infty \quad \gamma > \mathbf{3}, \\ &\lim_{N\to\infty} \langle k \rangle < \infty \quad \text{and} \quad \lim_{N\to\infty} \langle k^2 \rangle - \langle k \rangle^2 = \infty \quad \mathbf{2} < \gamma < \mathbf{3}, \\ &\lim_{N\to\infty} \langle k \rangle = \infty \quad \text{and} \quad \lim_{N\to\infty} \langle k^2 \rangle - \langle k \rangle^2 = \infty \quad \gamma < \mathbf{2}. \end{split}$$

Most of the complex networks observed in nature and technology have $\gamma \leq$ 3 and very often $\gamma \simeq$ 2.

▲□ → ▲ 注 → ▲ 注 → …

 $P_L(k) = Prob.$ (that the end of a link points to a node of degree k)

It is simple to see that

$$P_L(k) = rac{P(k)k}{\langle k
angle}$$

We define also

 $P_L(k, k') = Prob.$ (that the two ends of a link point to a node of degree k and to a node of degree k', resp.)

A graph *G* is called Uncorrelated if $P_L(k, k') = P_L(k)P_L(k')$.

御下 イヨト イヨト 三日

Clustering Coefficient $\langle C \rangle$

C(i) = Prob. (that between two neighbors of node *i* there is a link) $\langle C \rangle = \frac{1}{N} \sum_{i} C(i)$ Average Clustering Coefficient

 $\langle C \rangle = 0$, Trees and Bethe Lattices $\langle C \rangle = O(N^{-1})$, Random Graph $\langle C \rangle = O(N^{-\alpha}), \alpha < 1$ Uncorrelated Complex Networks $\langle C \rangle = O(1)$, Lattices and Strongly Correlated Complex Networks $\langle C \rangle = 1$, Complete Graph

Most of the complex networks observed in nature and technology have a small but not negligible $\langle C \rangle$.

(日本) (日本) (日本) (日本)

Given *G*, let $\ell_{i,j}$ the length (*i.e.*, the number of links), of the shortest path between *i* and *j*. Their mean is

$$\langle \ell \rangle = \frac{2}{N(N-1)} \sum_{i < j} \ell_{i,j}$$

In most cases of interest $\langle \ell \rangle$ scales very slowly with *N* (Small-World) and, furthermore the distribution of the $\ell_{i,j}$ is quite picked around $\langle \ell \rangle$, and $\langle \ell \rangle \sim Diameter(G) = \max_{i,j} \ell_{i,j}$.

▲ 伊 ト ▲ 臣 ト ▲ 臣 ト …

Regular d-dimensional Lattice

< 2 → 2

Regular *d*-dimensional Lattice

In a cube of side R, $N \propto R^d$ and $\langle \ell \rangle \sim D \sim R \Rightarrow \langle \ell \rangle \sim N^{1/d}$.

Bethe Lattice = Infinite Regular Tree

R=distance between the central node, chosen as reference and the nodes on the boundary of this sub-graph having *N* nodes. We have $N = 3 \times 2^{R-1} \Rightarrow R - 1 = \log(N/3)/\log(2) \Rightarrow$ the maximal distance between two randomly chosen nodes in the sub-graph will be $D = 2R = 2 + 2\log(N/3)/\log(2)$, from which we guess also $\langle \ell \rangle = O(\log(N)/\log(2))$. Given *N* and a parameter $0 \le p \le 1$, for each pair of nodes put a link with probability *p*. In other words the $a_{i,j}$'s are i.i.d random variables with

Prob.
$$(a_{i,j} = 1) = p$$
, *Prob.* $(a_{i,j} = 0) = 1 - p$.

We have

$$\langle k \rangle = \frac{\langle 2L \rangle}{N},$$

and from

$$\langle L \rangle = \frac{N(N-1)}{2} \rho \quad \Rightarrow \quad \langle k \rangle = (N-1) \rho$$

★ Ξ ► < Ξ ► .</p>

A Random Graph with N=20

< □ > < □ > < □ > < □ > < □ > .

æ

Sparse Random Graph

Since

$$\langle k \rangle = (N-1)p \quad \Rightarrow$$

if we choose

$$p = \frac{c}{N-1}$$
, $c = O(1) \Rightarrow \langle k \rangle = c = O(1)$ (Sparse – Graph)

It is immediate to see that

$$\langle C \rangle = O(c N^{-1})$$
 "Locally Tree – like..." to be discussed later

 \Rightarrow we can use the analogy with the Bethe Lattice and find-out the Small-World property:

$$\langle \ell \rangle \sim \frac{\log(N)}{\log(\langle k \rangle)}$$
 "Six Degrees of Separation..." to be discussed later

* E > * E >

æ

Sparse Random Graph

We have

$$P(k) = p^k (1-p)^{N-1-k} \binom{N-1}{k}$$

 \Rightarrow in the sparse case, $p = \frac{c}{N-1}$, we have

1

$$\lim_{N\to\infty} P(k) = \frac{c^k}{k!} e^{-c}$$

 \Rightarrow This Degree Distribution is not representative of real-world networks!

< 回 > < 三 > < 三 > -

1

How Real Nets look like: Flickr-User

How Real Nets look like: Air-Traffic

How Real Nets look like: Bio

Biological networks: proteomics

M. Ostilli Mini course on Co

How Real Nets look like: Internet

M. Ostilli Mini course on Complex Networks

How Real Nets look like: WWW of Universities

How Real Nets look like: Neural Network

How Real Nets look like: Food Web

M. Ostilli

How Real Nets look like: Food Web

Power Law of Real Nets (A. Clauset et.al. SIAM 2009)

Power Law of Real Nets (A. Clauset et.al. SIAM 2009)

quantity	n	$\langle x \rangle$	σ	x_{\max}	\hat{x}_{\min}	$\hat{\alpha}$
count of word use	18855	11.14	148.33	14086	7 ± 2	1.95(2)
protein interaction degree	1846	2.34	3.05	56	5 ± 2	3.1(3)
metabolic degree	1641	5.68	17.81	468	4 ± 1	2.8(1)
Internet degree	22688	5.63	37.83	2583	21 ± 9	2.12(9)
telephone calls received	51360423	3.88	179.09	375746	120 ± 49	2.09(1)
intensity of wars	115	15.70	49.97	382	2.1 ± 3.5	1.7(2)
terrorist attack severity	9101	4.35	31.58	2749	12 ± 4	2.4(2)
HTTP size (kilobytes)	226386	7.36	57.94	10971	36.25 ± 22.74	2.48(5)
species per genus	509	5.59	6.94	56	4 ± 2	2.4(2)
bird species sightings	591	3384.36	10952.34	138705	6679 ± 2463	2.1(2)
blackouts $(\times 10^3)$	211	253.87	610.31	7500	230 ± 90	2.3(3)
sales of books $(\times 10^3)$	633	1986.67	1396.60	19077	2400 ± 430	3.7(3)
population of cities $(\times 10^3)$	19447	9.00	77.83	8009	52.46 ± 11.88	2.37(8)
email address books size	4581	12.45	21.49	333	57 ± 21	3.5(6)
forest fire size (acres)	203785	0.90	20.99	4121	6324 ± 3487	2.2(3)
solar flare intensity	12773	689.41	6520.59	231300	323 ± 89	1.79(2)
quake intensity $(\times 10^3)$	19302	24.54	563.83	63096	0.794 ± 80.198	1.64(4)
religious followers $(\times 10^6)$	103	27.36	136.64	1050	3.85 ± 1.60	1.8(1)
freq. of surnames $(\times 10^3)$	2753	50.59	113.99	2502	111.92 ± 40.67	2.5(2)
net worth (mil. USD)	400	2388.69	4167.35	46000	900 ± 364	2.3(1)
citations to papers	415229	16.17	44.02	8904	160 ± 35	3.16(6)
papers authored	401445	7.21	16.52	1416	133 ± 13	4.3(1)
hits to web sites	119724	9.83	392.52	129641	2 ± 13	1.81(8)
links to web sites	241428853	9.15	106871.65	1199466	3684 ± 151	2.336(9)
	TABLE 6.1 TABLE 6.1					

Consider a sequence of non negative integers k_1, \ldots, k_N such that

$$\sum_{i=1}^{N} k_i = 2L$$

Then connect in all the possible ways the 2L stubs

(個) (日) (日) (日)

The Configuration Model

* 伊 ト * ヨ ト * ヨ ト -

The Configuration Model

- In principle we can build graphs with "any" given P(k) = N(k)/N
- Due to the random way by which we join the stubs, these graphs are approximately uncorrelated: *Prob.* $(a_{i,j} = 1) \simeq k_i k_j / 2L$
- Self-links and multiple-links exist but are negligible
- We can evaluate (C)
- We can evaluate $\langle \ell \rangle$
- We can understand when correlations are important

・ロト ・ 同ト ・ ヨト ・ ヨト

We use

 $\langle C \rangle = Prob.$ (that between two neighbors of a given node there is a link)

$$\Rightarrow \quad \langle {\cal C}
angle = rac{1}{N} rac{\langle k(k-1)
angle^2}{\langle k
angle^3}$$

・ 戸 ト ・ 三 ト ・ 三 ト

3

We use $\mathcal{N}_\ell = \text{Number of Paths of length } \ell$

$$\langle \mathcal{N}_{\ell} \rangle = \langle k \rangle \left(\frac{\langle k(k-1) \rangle}{\langle k \rangle} \right)^{\ell-1}$$

$$\Rightarrow \quad \langle \ell \rangle = \frac{\ln(N/\langle k \rangle)}{\ln\left(\frac{\langle k(k-1) \rangle}{\langle k \rangle}\right)}$$

This makes us to understand also that the shortest loops are of length $O(\ln N)$

▲ 伊 ト ▲ 臣 ト ▲ 臣 ト …

3

The Configuration Model: About Correlations

?? Prob.
$$(a_{i,j=1}) = rac{k_i \ k_j}{N\langle k \rangle}$$
 ??

$$\max_{i,j} \frac{k_i \ k_j}{N\langle k \rangle} = \frac{k_{\max}^2}{N\langle k \rangle}$$

If $P(k) \sim k^{-\gamma}$ we use

$$\langle k_{\max} \rangle \sim N^{rac{1}{\gamma-1}}$$

$$\Rightarrow \quad rac{k_{\max}^2}{N\langle k
angle} \sim N^{rac{3-\gamma}{\gamma-1}}$$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 = ∽ ♀ ()

• We have static network models where P(k) is the only "arbitrary" input (maximally random) and where, in particular, if $P(k) \sim k^{-\gamma}$ with $\gamma > 2$:

•
$$\langle C \rangle \rightarrow 0$$
 (Locally Tree-Like)

- $\langle \ell \rangle \sim \ln(N)$ for $\gamma > 3$ (Small-World), or
- $\langle \ell \rangle \sim \ln(\ln(N))$ for $\gamma < 3$ (Ultra-Small-World)
- Shortest Loops have lenght ~ ln(N) (Locally Tree-Like)
- Correlations do exist for $\gamma < 3$ (Degree-Degree Corr.)

<ロト < 回ト < 亘ト < 亘ト < 亘 - つへへ

Day 2: Percolation and Magnetism

- Examples
- Node- and Link-Percolation
- Percolation in Uncorrelated Complex Networks
- Anomalous Mean-Field behavior
- Magnetism

★ E ► ★ E ►

<= ∃⇒

æ

Link- and Node-Percolation

site percolation

Source: http://mathworld.wolfram.com/BondPercolation.html

Bond- (or Link-) Percolation: Links are kept with probability p

Node- (or Site-) Percolation: Nodes are kept with probability p

For the moment being we can avoid making use of *p*.

* 伊 ト * ヨ ト * ヨ ト -

Percolation Without Removal in the Random Graph

M. Ostilli Mini course on Complex Networks

Percolation Without Removal in Uncorrelated Nets

F.C.C. = Finite Connected Component G.C.C. = Giant Connected Component

x = Prob. (that the end of a randomly chosen link points to a F.C.C.)

S = (Number of Nodes belonging to the G.C.C.)/N

$$x = \sum_{k=1} P_L(k) x^{k-1}$$

$$1-S=\sum_{k=0}P(k)x^k$$

$$\frac{\langle k(k-1)\rangle}{\langle k\rangle} < 1 \quad \text{No Percolation}$$
$$\frac{\langle k(k-1)\rangle}{\langle k\rangle} > 1 \quad \text{Percolation}$$

< □ > < □ > < □ > □ □

Anomalous Mean-Field Behavior (No Removal)

Within a certain limit, we can choose P(k) such that

(*)
$$\frac{\langle k(k-1)\rangle}{\langle k\rangle} = 1$$
 Percolation Threshold

If in particular $P(k) \sim k^{-\gamma}$, we find:

if 2 < γ < 3, (k²) = ∞, to satisfy (*) we need to introduce random node removal

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の々で

Percolation via Node-Removal in Uncorrelated Nets

Now we remove randomly each node with probability $1 - p \Rightarrow$

$$x = 1 - p + p \sum_{k=1} P_L(k) x^{k-1}$$

$$1-S=1-p+p\sum_{k=0}P(k)x^k$$

$$p rac{\langle k(k-1)
angle}{\langle k
angle} < 1$$
 No Percolation
 $p rac{\langle k(k-1)
angle}{\langle k
angle} > 1$ Percolation

(個) (ヨ) (ヨ)

3

Anomalous Mean-Field Behavior (Node-Removal)

$$p_c = rac{\langle k
angle}{\langle k(k-1)
angle}$$
 Per

Percolation Threshold

and if $P(k) \sim k^{-\gamma}$ we find

• if
$$\gamma > 4$$
, $\langle k^3 \rangle < \infty$, and
 $S \sim (p - p_c)^{\beta}$, with $\beta = 1$ (classical limit)
• if $3 < \gamma < 4$, $\langle k^2 \rangle < \infty$, $\langle k^3 \rangle = \infty$, and
 $S \sim (p - p_c)^{\beta}$, with $\beta = \frac{1}{\gamma - 3}$
• if $2 < \gamma < 3$, $\langle k^2 \rangle = \infty$, $p_c \rightarrow 0$ and $S \sim p^{\beta}$ with $\beta = \frac{1}{3 - \gamma}$

<ロト < 同ト < 三ト < 三ト = 三 の < ○</p>

If $P(k) \sim k^{-\gamma}$ we have:

▲御▶ ▲ヨ▶ ▲ヨ▶ …

3

- If for k large P(k) ~ e^{-k/⟨k⟩} or P(k) ~ k^{-γ} with γ ≥ 5, we have in both cases almost homogeneous networks, k ~ ⟨k⟩ and m ~ (T − T_c)^β, with β = ½ (cl. mean-field)
- If for k large P(k) ~ k^{-γ} with γ ~ 2, we have an extremely heterogeneous network, k fluctuates a lot and T_c = ∞ with m ~ T^{-β}
- An extreme example: The Star Graph

(個) (モン・モン・

- Examples
- Random Growing Model
- Barabasi-Albert Model
- Linear Model
- Continuum Approximation

< 🗇 🕨

* E > * E >

Growing Networks

M. Ostilli Mini course on Complex Networks

Prob. (that the new link goes to a node of degree k) = $\frac{1}{t}$ \Rightarrow Master Equation for P(k; t):

$$P(k; t+1)(t+1) - P(k; t)t = P(k-1; t) - P(k; t) + \delta_{k,1}$$

$$\Rightarrow \lim_{t\to\infty} P(k;t) = P(k) = \frac{1}{2^k}$$

* 伊 ト * ヨ ト * ヨ ト -

Barabasi-Albert Model

Prob. (that the new link goes to a node of degree k) = $\frac{k}{\sum_{i=1}^{t} k_i}$

$$\Rightarrow \lim_{t\to\infty} P(k;t) = P(k) \simeq \frac{1}{(k+2)(k+1)k} \simeq k^{-3}$$

$$\langle C
angle \sim rac{1}{N^{3/4}}$$

$$\langle \ell \rangle \sim \frac{\ln(N)}{\ln(\ln(N))}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Barabasi-Albert Model Generalized

Prob. (that one of the new *m* links goes to a node of degree k) = $\frac{k}{\sum_{i=1}^{k} k_i}$

$$\Rightarrow \lim_{t\to\infty} P(k;t) = P(k) \simeq \frac{1}{(k+2)(k+1)k} \simeq k^{-3}$$

$$\langle C
angle \sim rac{1}{N^{3/4}}$$

$$\langle \ell \rangle \sim \frac{\ln(N)}{\ln(\ln(N))}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Here $k_0 \ge 0$ and k refers to IN-degree only

Pr. (that one of the new *m* links goes to a node of degree k) = $\frac{k+k_0}{\sum_{i=1}^{t} (k_i+k_0)}$

$$\Rightarrow \lim_{t \to \infty} P(k; t) = P(k) \sim k^{-\gamma}, \quad \gamma = \mathbf{2} + \frac{k_0}{m}$$

▲圖 ▶ ▲ 注 ▶ ▲ 注 ▶ …

3

References:

- R. Albert, A.L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys. 74, 47 (2002).
- S.N. Dorogovtsev, J.F.F. Mendes, *Evolution of Networks* (University Press: Oxford, 2003).
- M.E.J. Newman, The structure and function of complex networks, SIAM Review 45, 167 (2003).
- S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, *Critical phenomena in complex networks*, Rev. Mod. Phys. 80, 1275 (2008).
- S.N. Dorogovtsev, Lectures on complex networks (Oxford Master Series in Statistical, Computational, and Theoretical Physics, 2010).

▲ 伊 ト ▲ 臣 ト ▲ 臣 ト …